================ by Jawad Haider
04 - NumPy Exercises - Solutions¶
- 1 NumPy Exercises - Solutions
- 1.1 Numpy Indexing and Selection
- 1.2 NumPy Operations
- 1.3 Bonus Question
- 2 Great Job! Thats the end of this part.
NumPy Exercises - Solutions¶
Now that we’ve learned about NumPy let’s test your knowledge. We’ll start off with a few simple tasks and then you’ll be asked some more complicated questions.
IMPORTANT NOTE! Make sure you don’t run the cells
directly above the example output shown,
otherwise you will end up writing over the example output!
otherwise you will end up writing over the example output!
1. Import NumPy as np¶
2. Create an array of 10 zeros¶
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
3. Create an array of 10 ones¶
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
4. Create an array of 10 fives¶
array([5., 5., 5., 5., 5., 5., 5., 5., 5., 5.])
5. Create an array of the integers from 10 to 50¶
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50])
6. Create an array of all the even integers from 10 to 50¶
array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
44, 46, 48, 50])
7. Create a 3x3 matrix with values ranging from 0 to 8¶
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
8. Create a 3x3 identity matrix¶
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
9. Use NumPy to generate a random number between 0 and 1
NOTE: Your result’s value should be different from the one shown below.¶
array([0.65248055])
10. Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution
NOTE: Your result’s values should be different from the ones shown below.¶
array([ 1.80076712, -1.12375847, -0.98524305, 0.11673573, 1.96346762,
1.81378592, -0.33790771, 0.85012656, 0.0100703 , -0.91005957,
0.29064366, 0.69906357, 0.1774377 , -0.61958694, -0.45498611,
-2.0804685 , -0.06778549, 1.06403819, 0.4311884 , -1.09853837,
1.11980469, -0.48751963, 1.32517611, -0.61775122, -0.00622865])
11. Create the following matrix:¶
array([[0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ],
[0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 ],
[0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 ],
[0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 ],
[0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5 ],
[0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 ],
[0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7 ],
[0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8 ],
[0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9 ],
[0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1. ]])
12. Create an array of 20 linearly spaced points between 0 and 1:¶
array([0. , 0.05263158, 0.10526316, 0.15789474, 0.21052632,
0.26315789, 0.31578947, 0.36842105, 0.42105263, 0.47368421,
0.52631579, 0.57894737, 0.63157895, 0.68421053, 0.73684211,
0.78947368, 0.84210526, 0.89473684, 0.94736842, 1. ])
Numpy Indexing and Selection¶
Now you will be given a starting matrix (be sure to run the cell below!), and be asked to replicate the resulting matrix outputs:
array([[ 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]])
13. Write code that reproduces the output shown below.
Be careful not to run the cell immediately above the output, otherwise you won’t be able to see the output any more.¶
array([[12, 13, 14, 15],
[17, 18, 19, 20],
[22, 23, 24, 25]])
14. Write code that reproduces the output shown below.¶
20
15. Write code that reproduces the output shown below.¶
array([[ 2],
[ 7],
[12]])
16. Write code that reproduces the output shown below.¶
array([21, 22, 23, 24, 25])
17. Write code that reproduces the output shown below.¶
array([[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25]])
NumPy Operations¶
18. Get the sum of all the values in mat¶
325
19. Get the standard deviation of the values in mat¶
7.211102550927978
20. Get the sum of all the columns in mat¶
array([55, 60, 65, 70, 75])
Bonus Question¶
We worked a lot with random data with numpy, but is there a way we can insure that we always get the same random numbers? Click Here for a Hint
Great Job! Thats the end of this part.¶
Don't forget to give a star on github and follow for more curated Computer Science, Machine Learning materials