BootCamps Notes ¶
The structure of this directory is as follow:
Here you will find notes related to: ¶
-
Numpy πΈοΈ
>>>0. NumPy-Arrays
>>>1. NumPy-Indexing-and-Selection
>>>2. NumPy-Operations
>>>3. NumPy-Exercises
>>>4. NumPy-Exercises-Solutions -
Pandas πΌ
>>>0. Intro-to-Pandas
>>>1. Series
>>>2. DataFrames
>>>3. Missing-Data
>>>4. Groupby
>>>5. Operations
>>>6. Data-Input-and-Output
>>>7. Pandas-Exercises
>>>8. Pandas-Exercises-Solutions -
Pytorch Basics π₯
>>>0. Tensor-Basics
>>>1. Tensor-Operations
>>>2. PyTorch-Basics-Exercises
>>>3. PyTorch-Basics-Exercises-Solutions -
Pytorch for Deeplearning Bootcamp: π
a. ANN - Artificial Neural Networks
>>>0. PyTorch-Gradients
>>>1. Linear-Regression-with-PyTorch
>>>2. DataSets-with-Pytorch
>>>3. Basic-PyTorch-NN
>>>4. a-Full-ANN-Code-Along-Regression
>>>5. b-Full-ANN-Code-Along-Classification
>>>6. Neural-Network-Exercises
>>>7. Neural-Network-Exercises-Solutions
>>>8. Recap-Saving-and-Loading-Trained-Modelsb. CNN - Convolutional Neural Networks
>>>0. MNIST-ANN-Code-Along
>>>1. MNIST-with-CNN
>>>2. CIFAR-CNN-Code-Along
>>>3. Loading-Real-Image-Data
>>>4. CNN-on-Custom-Images
>>>5. CNN-Exercises
>>>6. CNN-Exercises-Solutionsc. RNN - Recurrent Neural Networks
>>>0. Basic-RNN
>>>1. RNN-on-a-Time-Series
>>>2. RNN-Exercises
>>>3. RNN-Exercises-Solutionsd. NLP with PyTorch
>>>0. RNN-for-Text-Generation
e. Using GPU
>>>0. Using-GPU-and-CUDA -
Tensorflow BootCamp: π
a. Colab Basics π
>>>0 Demo
>>>1. Installing Tensorflow
>>>2. Loading Datab. Machine Learning Basics π½
>>>1. Linear Classification
>>>2. Linear Regressionc. ANN - Artificial Neural Networksπ
>>>1. ANN MNIST
>>>2. ANN Regressiond. CNN - Convolutional Neural Networks π
>>>1. Fashion MNIST
>>>2. CIFAR
>>>3. Improved CIFARe. RNN - Recurrent Neural Networks βοΈ
>>>1. Autoregressive Model
>>>2. Simple RNN sine
>>>3. RNN Shape
>>>4. LSTM Non-linear
>>>5. Long Distance
>>>6. RNN MNIST
>>>7. Stock Returnsf. NLP - Natural Language Processing π
>>>1. Text Preprocessing
>>>2. Spam Detection CNN
>>>3. Spam Detection RNNg. Recommendar Systems πͺ
>>>1. Recommendar Systemh. Transfer Learning πͺ
>>>1. Transfer Learning
>>>2. Transfer Learning with Data Augmentationi. GANs - Generative Adversarial Networks π
>>>1. GANj. Advance Tensorflow π¨οΈ
>>>1. Tensorflow serving >>>2. Mirror Strategy
>>>3. TFLite
>>>4. TPUk. Low-Level Tensorflow πͺ
>>>1. Basic Computation
>>>2. Variables and Gradients
>>>3. Build your own Model
soon to be added... ¶
- matplotlib
- seaborn
- Python for DataSceince and Machine Learning